Question : If $2 \cot \theta = 3$, find the value of $\frac{\sqrt{13} \sin \theta – 3 \tan \theta}{3 \tan \theta + \sqrt{13} \cos \theta}$
Option 1: $\frac{1}{\sqrt{13}}$
Option 2: $\frac{2}{\sqrt{13}}$
Option 3: 0
Option 4: $\frac{2}{3}$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 0
Solution : $2 \cot \theta = 3$ $⇒\cot \theta=\frac{3}{2}$ $⇒\frac{\text{Base}}{\text{Perpendicular}} =\frac{3}{2}$ $⇒\frac{AB}{BC}= \frac{3}{2}$ Let $AB = 3k, BC = 2k$ From Pythagoras' Theorem, $AC^{2} = AB^{2} + BC^{2}$ $⇒AC^{2} = (3k)^{2} + (2k)^{2}$ $⇒AC^{2} = 13k^2$ $⇒AC = \sqrt{13}k$ $\sin\theta = \frac{\text{Perpendicular}}{\text{Hypotenuse}} = \frac{2k}{\sqrt{13}k}=\frac{2}{\sqrt{13}}$ $\cos\theta = \frac{\text{Base}}{\text{Hypotenuse}} = \frac{3k}{\sqrt{13}k}= \frac{3}{\sqrt{13}}$ $\tan \theta = \frac{\text{Perpendicular}}{\text{Base}} = \frac{2k}{3k}=\frac{2}{3}$ Putting these values in the equation, we get, $=\frac{\sqrt{13} \sin \theta – 3 \tan \theta}{3 \tan \theta + \sqrt{13} \cos \theta}$ $=\frac{\sqrt{13} \times \frac{2}{\sqrt{13}} - 3 \times \frac{2}{3}}{3 \times\frac{2}{3} + \sqrt{13} \times \frac{3}{\sqrt{13}}}$ $=0$ Hence, the correct answer is 0.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : Which of the following is equal to $[\frac{\tan \theta+\sec \theta–1}{\tan \theta–\sec \theta+1}]$?
Question : $\frac{1+\cos \theta-\sin ^2 \theta}{\sin \theta(1+\cos \theta)} \times \frac{\sqrt{\sec ^2 \theta+\operatorname{cosec}^2 \theta}}{\tan \theta+\cot \theta}, 0^{\circ}<\theta<90^{\circ}$, is equal to:
Question : If $5\cos\theta+12\sin\theta=13,\ 0^0<\theta<90^0$, then the value of $\sin\theta$ is:
Question : If $\frac{\sin ^2 \theta}{\cos ^2 \theta-3 \cos \theta+2}=1, \theta$ lies in the first quadrant, then the value of $\frac{\tan ^2 \frac{\theta}{2}+\sin ^2 \frac{\theta}{2}}{\tan \theta+\sin \theta}$ is:
Question : If $3 \tan \theta=2 \sqrt{3} \sin \theta, 0^{\circ}<\theta<90^{\circ}$, then the value of $\frac{\operatorname{cosec}^2 2 \theta+\cot ^2 2 \theta}{\sin ^2 \theta+\tan ^2 2 \theta}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile