Question : If $\operatorname{sin} \theta=\frac{4}{5}$, find the value of $\tan \theta-\operatorname{cot} \theta$.
Option 1: $\frac{5}{12}$
Option 2: $\frac{7}{9}$
Option 3: $\frac{7}{12}$
Option 4: $\frac{7}{8}$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\frac{7}{12}$
Solution : $\sin\theta=\frac{AB}{AC}=\frac{4}{5}$ Let $AB = 4k$ and $AC = 5k$, Using Pythagoras theorem, $BC = \sqrt{AC^2-AB^2}= \sqrt{(5k)^2-(4k)^2}=3k$ Now, $\tan\theta-\cot\theta$ $= \frac{4k}{3k}-\frac{3k}{4k}$ $= \frac{7}{12}$ Hence, the correct answer is $\frac{7}{12}$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $\frac{\sec \theta-\tan \theta}{\sec \theta+\tan \theta}=\frac{1}{7}, \theta$ lies in first quadrant, then the value of $\frac{\operatorname{cosec} \theta+\cot ^2 \theta}{\operatorname{cosec} \theta-\cot ^2 \theta}$ is:
Question : $(\sin \theta+\operatorname{cosec} \theta)^2+(\cos \theta+\sec \theta)^2=$?
Question : If $\tan\theta=1$, then the value of $\frac{8\sin\theta\:+\:5\cos\theta}{\sin^{3}\theta\:–\:2\cos^{3}\theta\:+\:7\cos\theta}$ is:
Question : If $3 \tan \theta=2 \sqrt{3} \sin \theta, 0^{\circ}<\theta<90^{\circ}$, then the value of $\frac{\operatorname{cosec}^2 2 \theta+\cot ^2 2 \theta}{\sin ^2 \theta+\tan ^2 2 \theta}$ is:
Question : If $8 \cot \theta=6$, then the value of $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile