Question : If $\left(4y-\frac{4}{y}\right)=11$, find the value of $\left(y^2+\frac{1}{y^2}\right)$.
Option 1: $7 \frac{9}{16}$
Option 2: $5 \frac{9}{16}$
Option 3: $9 \frac{11}{16}$
Option 4: $9 \frac{9}{16}$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $9 \frac{9}{16}$
Solution : Given: $(4 y-\frac{4}{y})=11$ ⇒ $(y-\frac{1}{y})=\frac{11}{4}$ Squaring both sides, we get: $(y-\frac{1}{y})^2=\frac{121}{16}$ ⇒ $y^2+\frac{1}{y^2}-2×y×\frac{1}{y}=\frac{121}{16}$ ⇒ $y^2+\frac{1}{y^2} = \frac{121}{16} +2$ $= \frac{121+32}{16}$ $= \frac{153}{16}$ $= 9\frac{9}{16}$ Hence, the correct answer is $9\frac{9}{16}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\left(3 y+\frac{3}{y}\right)=8$, then find the value of $\left(y^2+\frac{1}{y^2}\right)$.
Question : The value of $2 \frac{3}{5} \div\left[2 \frac{1}{3} \div\left\{4 \frac{1}{3}-\left(2 \frac{1}{2}+\frac{2}{3}\right)\right\}\right]$ is equal to:
Question : Find the value of the given expression. $\left(2 \frac{1}{2}÷ 1 \frac{7}{8}\right) ÷\left(9 \frac{3}{8}÷ 11 \frac{2}{3} \text { of } \frac{1}{8}\right)$
Question : What is the value of $\left (\frac{3}{5}+\frac{7}{9}\right)$?
Question : If $\left(y^2+\frac{1}{y^2}\right)=167$ and $y>0$, find the value of $\left(y+\frac{1}{y}\right)$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile