Question : If $\left (x+\frac{1}{x}\right )=5$, find the value of $\frac{6x}{x^{2}+x+1}$.
Option 1: 3
Option 2: 2
Option 3: 1
Option 4: 0
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 1
Solution : Given: $\left (x+\frac{1}{x} \right)=5$ ⇒ $\frac{x^2+1}{x}=5$ ⇒ $x^2+1=5x$ Adding $x$ on both sides, ⇒ $x^2+1+x=5x+x$ ⇒ $x^2+x+1=6x$ Now, put the value of $x^2+x+1=6x$ in the expression $\frac{6x}{x^{2}+x+1}$ So, $\frac{6x}{x^{2}+x+1}=\frac{6x}{6x}=1$ Hence, the correct answer is 1.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x^{2} -3x +1=0$, then the value of $\frac{\left(x^4+\frac{1}{x^2}\right)}{\left(x^2+5 x+1\right)}$ is:
Question : If $\left(x^2+\frac{1}{x^2}\right)=7$, and $0<x<1$, find the value of $x^2-\frac{1}{x^2}$.
Question : If $x+\left [\frac{1}{(x+7)}\right]=0$, what is the value of $x-\left [\frac{1}{(x+7)}\right]$?
Question : If $\left (4x+\frac{1}{x} \right)=5,x\neq 0,$ then the value of $\frac{5x}{4x^{2}+10x+1}$ is:
Question : If $2x+\frac{1}{2x}=2,$ what is the value of $\sqrt{2\left (\frac{1}{x}\right)^{4}+\left (\frac{1}{x}\right)^{5}}\; ?$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile