Question : If $\tan \theta -\cot \theta =0$, find the value of $\sin \theta +\cos \theta$.
Option 1: $0$
Option 2: $1$
Option 3: $\sqrt{2}$
Option 4: $2$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\sqrt{2}$
Solution : Given: $\tan\theta -\cot\theta =0$ $⇒\tan\theta=\cot\theta$ $\therefore\theta = 45^{\circ}$ $\therefore \sin\theta +\cos\theta = \sin45^{\circ} + \cos45^{\circ}=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\frac{2}{\sqrt2}=\sqrt2$ Hence, the correct answer is $\sqrt2$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\sin\theta+\cos\theta=\sqrt{2}\cos\theta$, then the value of $\cot\theta$ is:
Question : The value of $\frac{\sin\theta-2\sin^{3}\theta}{2\cos^{3}\theta-\cos\theta}$ is equal to:
Question : If $6 \cot \theta=5$, then find the value of $\frac{(6 \cos \theta+\sin \theta)}{(6 \cos\theta-4 \sin\theta)}$
Question : If $\tan \theta+\sin \theta=A$ and $\tan \theta-\sin \theta=B$, then what is the value of $A^2-B^2$?
Question : If $(\sin \theta-\cos \theta)=0$, then the value of $\sin\;(\pi-\theta)+\sin \left(\frac{\pi}{2}-\theta\right)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile