Question : If $(4 y-\frac{4}{y})=13$, find the value of $(y^2+\frac{1}{y^2})$.
Option 1: $12 \frac{11}{16}$
Option 2: $10 \frac{9}{16}$
Option 3: $12 \frac{9}{16}$
Option 4: $8 \frac{9}{16}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $12 \frac{9}{16}$
Solution : Given: $4(y -\frac{1}{y}) = 13$ Squaring on both sides of the above expression, we get, $⇒4^2(y -\frac{1}{y})^2 = 13^2$ $⇒16(y^2+\frac{1}{y^2}-2) = 169$ $⇒(y^2+\frac{1}{y^2}) = \frac{169}{16}+2$ $⇒(y^2+\frac{1}{y^2}) = \frac{169+32}{16}$ $⇒(y^2+\frac{1}{y^2}) = \frac{201}{16} = 12 \frac{9}{16}$ Hence, the correct answer is $12 \frac{9}{16}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $(x-\frac{1}{3})^2+(y-4)^2=0$, then what is the value of $\frac{y+x}{y-x}$?
Question : Find the value of $k$, if $13 - [10 - \{16 + 8 \div(k - 2)\} + 2] = 20$
Question : If $\frac{11-13x}{x}+\frac{11-13y}{y}+\frac{11-13z}{z}=5$, then what is the value of $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$?
Question : If $2 x-y=2$ and $x y=\frac{3}{2}$, then what is the value of $x^3-\frac{y^3}{8}?$
Question : If $\operatorname{cosec} \theta+ \cot \theta=\frac{3}{2}$, what is the value of $\operatorname{cosec} \theta$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile