Question : If $\cot A=1, \sin B=\frac{1}{\sqrt{2}}$, find the value of $\sin (A+B)-\cot (A+B)$.
Option 1: $1-\sqrt{2}$
Option 2: $\frac{1}{2}$
Option 3: $0$
Option 4: $1$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $1$
Solution : $\cot A = 1= \cot 45°$ $\therefore A = 45°$ $\sin B = \frac{1}{\sqrt{2}}=\sin45°$ $\therefore B = 45°$ $\sin (A+B) = \sin 90° = 1$ $\cot (A+B) = \cot 90° = 0$ $\therefore \sin (A+B) -\cot (A+B) =1-0= 1$ Hence, the correct answer is $1$.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : If $2 \cot \theta = 3$, find the value of $\frac{\sqrt{13} \sin \theta – 3 \tan \theta}{3 \tan \theta + \sqrt{13} \cos \theta}$
Question : If $\theta$ is a positive acute angle and $4\sin^{2}\theta =3$, then the value of $\left (\tan\theta-\cot\frac{\theta}{2}\right)$ is:
Question : Using $\cos (A+B)=\cos A \cos B-\sin A \sin B$, find the value of $\cos 75^\circ$.
Question : In $\triangle{XYZ}$, right-angled at $Y$, if $\sin X = \frac{1}{2}$, find the value of $\cos X \cos Z + \sin X \sin Z$.
Question : Find the value of $\frac{\cos^2 15^{\circ}-\sin^2 15^{\circ}}{\cos^2 145^{\circ}+\sin^2 145^{\circ}}$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile