Question : If $(x+y):(x-y)=11:1$, find the value of $(\frac{5x+3y}{x-2y})$.
Option 1: $\frac{45}{4}$
Option 2: $\frac{4}{45}$
Option 3: $-\frac{45}{4}$
Option 4: $-\frac{4}{45}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $-\frac{45}{4}$
Solution : Given: $(x+y):(x-y)=11:1$ $\frac{(x+y)}{(x-y)}=\frac{11}{1}$ $⇒(x+y)=(11x-11y)$ $⇒12y=10x$ $⇒y=\frac{10x}{12}$ $⇒y=\frac{5x}{6}$ So, putting the value of $y$ in $(\frac{5x+3y}{x–2y})$, we get, $=(\frac{5x+3×\frac{5x}{6}}{x–2×\frac{5x}{6}})$ $=(\frac{5x+\frac{5x}{2}}{x–\frac{5x}{3}})$ $=\frac{(\frac{15x}{2})}{(\frac{–2x}{3})}$ $=\frac{15x}{2}×\frac{3}{–2x}$ $=-\frac{45}{4}$ Hence, the correct answer is $-\frac{45}{4}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $xy(x+y)=m$, then the value of $(x^3+y^3+3m)$ is:
Question : If $(x+\frac{1}{x})$ = 5, then the value of $\frac{5x}{x^{2}+5x+1}$ is:
Question : If $x+3y=-3x+y$, then $\frac{x^{2}}{2y^{2}}$ is equal to:
Question : If $x+y+z=0$, then what is the value of $\frac{\left (3y^{2}+x^{2}+z^{2} \right )}{\left (2y^{2}-xz \right)}$?
Question : If $(x-\frac{1}{3})^2+(y-4)^2=0$, then what is the value of $\frac{y+x}{y-x}$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile