Question : If $\cot A=\frac{5}{12}$, find the value of the following expression: $\frac{5\left(1-\cos^2 A\right)}{6\left(1-\sin^2 A\right)}$
Option 1: $\frac{144}{5}$
Option 2: $\frac{24}{25}$
Option 3: $\frac{144}{25}$
Option 4: $\frac{24}{5}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{24}{5}$
Solution : Given: $\cot A=\frac{5}{12}⇒ \cot^2A = \frac{25}{144}$ Using identity: $\cos^2A+\sin^2A=1$ $\frac{5(1-\cos^2A)}{6(1-\sin^2A)}$ = $\frac{5\sin^2A}{6\cos^2A}$ = $\frac{5}6\times \tan^2A $ = $\frac{5}6\times\frac{1}{\cot^2A} $ = $\frac{5}6\times \frac{144}{ 25}$ = $\frac{24}5$ Hence, the correct answer is $\frac{24}{5}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : The value of expression $4\left(\sin ^6 A+\cos ^6 A\right)-6\left(\sin ^4 A+\cos ^4 A\right)+8$ is:
Question : Simplify the given equation: $(1+\tan ^2 A)(1+\cot ^2 A)=?$
Question : What is the value of $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}+\frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta}$?
Question : If $\sin\phi=\frac{5}{6}$, the value of $\cot\phi \cdot \sin\phi \cdot \cos\phi$ is:
Question : If $\sin A+\sin ^2 A=1$, then the value of the expression $\left(\cos ^2 A+\cos ^4 A\right)$ is
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile