Question : If $x^2+\frac{1}{x^2}=\frac{7}{4}$ for $x>0$, what is the value of $(x^3+\frac{1}{x^3})$?
Option 1: $\frac{3\sqrt{3}}{5}$
Option 2: $\frac{3\sqrt{15}}{5}$
Option 3: $\frac{3\sqrt{15}}{8}$
Option 4: $\frac{3\sqrt{5}}{8}$
Correct Answer: $\frac{3\sqrt{15}}{8}$
Solution : Given: $x^2+\frac{1}{x^2}=\frac{7}{4}$ ⇒ $x^2+\frac{1}{x^2}+2=\frac{7}{4}+2$ [adding 2 on both sides] ⇒ $x^2+\frac{1}{x^2}+2×x^2×\frac{1}{x^2}=\frac{15}{4}$ ⇒ $(x+\frac{1}{x})^2=\frac{15}{4}$ $\therefore (x+\frac{1}{x})=\frac{\sqrt{15}}{2}$ Now, we know, $(x+\frac{1}{x})^3=x^3+\frac{1}{x^3}+3×x×\frac{1}{x}(x+\frac{1}{x})$ ⇒ $(\frac{\sqrt{15}}{2})^3=x^3+\frac{1}{x^3}+3×\frac{\sqrt{15}}{2}$ $\therefore x^3+\frac{1}{x^3}= \frac{15\sqrt{15}}{8}-\frac{3\sqrt{15}}{2}=\frac{3\sqrt{15}}{8}$ Hence, the correct answer is $\frac{3\sqrt{15}}{8}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $x^2+\frac{1}{x^2}=\frac{7}{4}$ for $x>0$; then what is the value of $x+\frac{1}{x}$?
Question : If $x^4+x^{-4}=47, x>0$, then what is the value of $x+\frac{1}{x}-2?$
Question : $\frac{1}{3-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{5}}+\frac{1}{\sqrt{5}-2}=?$
Question : If $x^2-2\sqrt{10}x+1=0$, what is the value of $(x-\frac{1}{x})$?
Question : Given that A and B are second quadrant angles, $\sin A = \frac{1}{3}$ and $\sin B = \frac{1}{5}$, then find the value of $\cos(A-B)$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile