Question : If in $\triangle PQR$ and $\triangle DEF, \angle P=52^{\circ}, \angle Q=74^{\circ}, \angle R=54^{\circ}, \angle D=54^{\circ}, \angle E=74^{\circ}$ and $\angle F=52^{\circ}$, then which of the following is correct?
Option 1: $\triangle \mathrm{PQR} \sim \triangle \mathrm{FED}$
Option 2: $\triangle \mathrm{RQP} \sim \triangle \mathrm{FED}$
Option 3: $\triangle \mathrm{PRQ} \sim \Delta \mathrm{FED}$
Option 4: $\triangle \mathrm{PQR} \sim \triangle \mathrm{DEF}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\triangle \mathrm{PQR} \sim \triangle \mathrm{FED}$
Solution : $\because$ $\angle P=\angle F=52^0$ $\angle Q=\angle E=74^0$ And $\angle R=\angle D=54^0$ By AAA criteria, triangles are similar. So, $\triangle \mathrm{PQR} \sim \triangle \mathrm{FED}$. Hence, the correct answer is $\triangle \mathrm{PQR} \sim \triangle \mathrm{FED}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : It is given that $\triangle \mathrm{ABC} \cong \triangle \mathrm{FDE}$ and $\mathrm{AB}=5 \mathrm{~cm}, \angle \mathrm{B}=40^{\circ}$ and $\angle \mathrm{A}=80^{\circ}$. Then which of the following is true?
Question : In a triangle $\triangle \mathrm{PQR}$, the bisectors of $\angle \mathrm{P}$ and $\angle \mathrm{R}$ meet at a point $\mathrm{M}$ inside the triangle. If the measurement of $\angle P M R=127^{\circ}$, then the measurement of $\angle Q$ is:
Question : It is given that $\triangle \mathrm{PQR} \cong \triangle \mathrm{MNY}$ and $PQ=8\ \mathrm{cm}, \angle Q = 55°$ and $\angle P = 72°$. Which of the following is true?
Question : In $\triangle \mathrm{PQR}, \angle \mathrm{P}=46^{\circ}$ and $\angle \mathrm{R}=64^{\circ}$.If $\triangle \mathrm{PQR}$ is similar to $\triangle \mathrm{ABC}$ and in correspondence, then what is the value of $\angle \mathrm{B}$?
Question : If the angles $P, Q$ and $R$ of $\triangle PQR$ satisfy the relation $2 \angle R-\angle P=\angle Q-\angle R$, then find the measure of $\angle R$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile