Question : If $\theta$ is a positive acute angle and $4\sin^{2}\theta =3$, then the value of $\left (\tan\theta-\cot\frac{\theta}{2}\right)$ is:
Option 1: $1$
Option 2: $0$
Option 3: $\sqrt{3}$
Option 4: $\frac{1}{\sqrt{3}}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $0$
Solution : Given: $4\sin^{2}\theta =3$ $⇒\sin\theta = \pm\frac{\sqrt{3}}{2}=\sin 60°$ Since $\theta$ is acute, so, $\theta=60°$ So, $\tan\theta-\cot\frac{\theta}{2}=\tan60°-\cot30°=\sqrt3-\sqrt3=0$ Hence, the correct answer is 0.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\tan\theta-\cot\theta=0$ and $\theta$ is positive acute angle, then the value of $\frac{\tan(\theta+15)}{\tan(\theta-15)}$ is:
Question : If $2 \cot \theta = 3$, find the value of $\frac{\sqrt{13} \sin \theta – 3 \tan \theta}{3 \tan \theta + \sqrt{13} \cos \theta}$
Question : If $\cos^2 \theta=\frac{3}{4}$, where $\theta$ is an acute angle, then the value of $\sin \left(\theta+30^{\circ}\right)$ is:
Question : $\theta$ is a positive acute angle and $\sin\theta-\cos\theta=0$, then the value of $\sec\theta+\operatorname{cosec}\theta$ is:
Question : If $\theta$ is a positive acute angle and $3(\sec^{2}\theta+\tan^{2}\theta)=5$, then the value of $\cos2\theta$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile