Question : If $\theta$ is a positive acute angle and $3(\sec^{2}\theta+\tan^{2}\theta)=5$, then the value of $\cos2\theta$ is:
Option 1: $\frac{1}{2}$
Option 2: $\frac{1}{\sqrt{2}}$
Option 3: $\frac{\sqrt{3}}{2}$
Option 4: $1$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{1}{2}$
Solution : Given: $3(\sec^{2}\theta+\tan^{2}\theta)=5$ ⇒ $3\sec^{2}\theta+3\tan^{2}\theta=5$ ⇒ $6\tan^{2}\theta+3=5$ ⇒ $\tan^{2}\theta=\frac{1}{3}$ We know that, $\cos\theta=\frac{1- \tan^{2}\frac{\theta}{2}}{1+ \tan^{2}\frac{\theta}{2}}$ So, $\cos2\theta=\frac{1- \tan^{2}\theta}{1+ \tan^{2}\theta}=\frac{1-\frac{1}{3}}{1+\frac{1}{3}}=\frac{\frac{2}{3}}{\frac{4}{3}}={\frac{1}{2}}$ Hence, the correct answer is $\frac{1}{2}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\tan\theta-\cot\theta=0$ and $\theta$ is positive acute angle, then the value of $\frac{\tan(\theta+15)}{\tan(\theta-15)}$ is:
Question : If $\theta$ is a positive acute angle and $4\sin^{2}\theta =3$, then the value of $\left (\tan\theta-\cot\frac{\theta}{2}\right)$ is:
Question : Find the value of $\sec\theta - \tan\theta$, if $\sec\theta + \tan\theta = \sqrt{5}$.
Question : If $\sec\theta-\cos\theta=\frac{3}{2}$, where $\theta$ is a positive acute angle, then the value of $\sec\theta$ is:
Question : If $\sec \theta-2 \cos \theta=\frac{7}{2}$, where $\theta$ is a positive acute angle, then the value of $\sec \theta$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile