Question : If $2(\cos^{2}\theta-\sin^{2}\theta)=1$; ($\theta$ is a positive acute angle), then $\cot\theta$ is equal to:
Option 1: $–\sqrt{3}$
Option 2: $\frac{1}{\sqrt{3}}$
Option 3: $1$
Option 4: $\sqrt{3}$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\sqrt{3}$
Solution : Given: $2(\cos^{2}\theta-\sin^{2}\theta)=1$ ⇒ $\cos^{2}\theta-(1-\cos^{2}\theta)=\frac{1}{2}$ ⇒ $2\cos^{2}\theta=1+\frac{1}{2}$ ⇒ $\cos^{2}\theta=\frac{3}{2×2}$ ⇒ $\cos\theta=\frac{\sqrt{3}}{2}$ We know that [$\cos30°=\frac{\sqrt{3}}{2}$] ⇒ $\cos\theta=\cos30°$ $\therefore\theta=30°$ Then, $\cot30°=\sqrt{3}$ Hence, the correct answer is $\sqrt{3}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\theta$ is an acute angle and $\sin \theta \cos \theta=2 \cos ^3 \theta-\frac{1}{4} \cos \theta$, then the value of $\sin \theta$ is:
Question : If $2\left (\cos^{2}\theta-\sin ^{2}\theta \right)=1$; ($\theta$ is a positive acute angle), then $\cot\theta$ is equal to:
Question : If $\theta$ is a positive acute angle and $4\cos ^{2}\theta -4\cos \theta +1=0$, then the value of $\tan (\theta -15^{\circ})$is equal to:
Question : If $\sec \theta+\tan \theta=\frac{1}{\sqrt{3}}$, then the positive value of $\cot \theta+\cos \theta$ is:
Question : The value of $\frac{\sin\theta-2\sin^{3}\theta}{2\cos^{3}\theta-\cos\theta}$ is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile