Question : If $\theta$ is a positive acute angles and $\operatorname{cosec}\theta =\sqrt{3}$, then the value of $\cot \theta -\operatorname{cosec}\theta$ is:
Option 1: $\sqrt2-\sqrt3$
Option 2: $\frac{\sqrt{2}(3+\sqrt{3})}{3}$
Option 3: $\frac{\sqrt{2}(3-\sqrt{3})}{3}$
Option 4: $\frac{3\sqrt{2}+\sqrt{3}}{3}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\sqrt2-\sqrt3$
Solution : Given: $\operatorname{cosec}\theta=\sqrt3$ $⇒\frac{1}{\sin\theta}=\sqrt3$ $⇒\sin\theta=\frac{1}{\sqrt3}$ We know that, $\cos\theta = \sqrt{1-\sin^2\theta}=\sqrt{1-(\frac{1}{\sqrt3})^2}=\sqrt{1-\frac{1}{3}}=\sqrt\frac{2}{3}$ So, $\cot\theta-\operatorname{cosec}\theta$ $=\frac{\cos\theta}{\sin\theta}-\operatorname{cosec}\theta$ $=\frac{\sqrt\frac{2}{3}}{\frac{1}{\sqrt3}}-\sqrt3$ $=\sqrt\frac{2}{3}×\sqrt3-\sqrt3$ $=\sqrt2-\sqrt3$ Hence, the correct answer is $\sqrt2-\sqrt3$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : What is the value of $\frac{\cot \theta+\operatorname{cosec} \theta-1}{\cot \theta-\operatorname{cosec} \theta+1}$?
Question : If $\sec \theta+\tan \theta=\frac{1}{\sqrt{3}}$, then the positive value of $\cot \theta+\cos \theta$ is:
Question : If $\operatorname{cosec} \theta-\cot \theta=\frac{7}{2}$, then the value of $\operatorname{cosec} \theta$ will be:
Question : If $2\left (\cos^{2}\theta-\sin ^{2}\theta \right)=1$; ($\theta$ is a positive acute angle), then $\cot\theta$ is equal to:
Question : If $2(\cos^{2}\theta-\sin^{2}\theta)=1$; ($\theta$ is a positive acute angle), then $\cot\theta$ is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile