Question : If $\theta$ is an acute angle and $\sin \theta \cos \theta=2 \cos ^3 \theta-\frac{1}{4} \cos \theta$, then the value of $\sin \theta$ is:
Option 1: $\frac{\sqrt{15}-1}{8}$
Option 2: $\frac{\sqrt{15}-1}{4}$
Option 3: $\frac{\sqrt{15}+1}{4}$
Option 4: $\frac{\sqrt{15}-1}{2}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{\sqrt{15}-1}{4}$
Solution : Given that $\sin \theta \cos \theta=2 \cos ^3 \theta-\frac{1}{4} \cos \theta$ ⇒ $\sin \theta=2 \cos ^2 \theta-\frac{1}{4}$ ⇒ $\sin \theta=2-2 \sin ^2 \theta-\frac{1}{4}$ ⇒ $2 \sin ^2 \theta + \sin \theta=\frac{7}{4}$ Let $\sin\theta=x$ Hence, the Expression becomes: $8x^2+4x-7=0$ Comparing with $ax^2+bx+c=0$ $a=8, b=4,$ and $c=-7$ Which gives us $x=\frac{-4\pm \sqrt{4^2-4×8×(-7)}}{2×8}$ ⇒$x=\frac{-1\pm \sqrt{15}}{4}$ ⇒ $x =\frac{\sqrt{15}-1}{4}$ ⇒ $\sin\theta = \frac{\sqrt{15}-1}{4}$ Hence, the correct answer is $\frac{\sqrt{15}-1}{4}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\theta$ is an acute angle and $\sin \theta=\frac{13}{19}$, what is the value of $\cos \theta?$
Question : If $\theta$ is a positive acute angle and $4\cos ^{2}\theta -4\cos \theta +1=0$, then the value of $\tan (\theta -15^{\circ})$is equal to:
Question : If $\frac{\cos \theta}{(1+\sin \theta)}+\frac{\cos \theta}{(1-\sin \theta)}=4$ and $\theta$ is acute, then the value of $\theta$ is:
Question : If $\sin \theta \cos \theta=\frac{1}{\sqrt{3}}$ then the value of $\left(\sin ^4 \theta+\cos ^4 \theta\right)$ is:
Question : If $\sin \theta \cos \theta=\frac{\sqrt{2}}{3}$,then the value of $\left(\sin ^6 \theta+\cos ^6 \theta\right)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile