Question : If $\theta$ is an acute angle and $\tan \theta+\cot \theta=2$, then the value of $\tan ^{200} \theta+\cot ^{200} \theta$ is:
Option 1: 1
Option 2: 2
Option 3: –1
Option 4: 0
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 2
Solution : Given $\theta$ is an acute angle Also, $\tan \theta+\cot \theta=2$ $\frac{\sin\theta}{\cos\theta}+\frac{\cos\theta}{\sin\theta} = 2$ ⇒ $\frac{\sin^2\theta + \cos^2\theta}{\sin\theta \cos\theta} = 2$ ⇒ $1 = 2\sin\theta \cos\theta$ ⇒ $\sin2\theta = 1$ ⇒ $2\theta = 90°$ ⇒ $\theta = 45°$ Now, $\tan ^{200} \theta+\cot ^{200} \theta$ $= (\tan 45°)^{200} + (\cot 45°)^{200} = 1^{200} + 1^{200} = 2$ Hence, the correct answer is 2.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : If $\tan\theta-\cot\theta=0$ and $\theta$ is positive acute angle, then the value of $\frac{\tan(\theta+15)}{\tan(\theta-15)}$ is:
Question : If $\theta$ is a positive acute angle and $4\sin^{2}\theta =3$, then the value of $\left (\tan\theta-\cot\frac{\theta}{2}\right)$ is:
Question : For any acute angle $\theta, \sin \theta+\sin^2 \theta=1$, then the value of $\cos^2 \theta+\cos^4 \theta=$___________.
Question : If $\sin \theta=\frac{8}{17}$, where $\theta$ is an acute angle, then what is the value of $\tan \theta+\cot \theta ?$
Question : If $2 \cot \theta = 3$, find the value of $\frac{\sqrt{13} \sin \theta – 3 \tan \theta}{3 \tan \theta + \sqrt{13} \cos \theta}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile