Question : If $\theta$ is an acute angle and $\sin \theta+\operatorname{cosec} \theta=2$, then the value of $\sin ^5 \theta+\operatorname{cosec}^5 \theta$ is:
Option 1: 10
Option 2: 2
Option 3: 4
Option 4: 5
Correct Answer: 2
Solution : Given, $\sin \theta+\operatorname{cosec} \theta=2$ This is possible only when both $\sin \theta=\operatorname{cosec} \theta=1$ So, $\sin ^5 \theta+\operatorname{cosec}^5 \theta=1^5+1^5$ ⇒ $\sin \theta+\operatorname{cosec} \theta=1+1$ ⇒ $\sin \theta+\operatorname{cosec} \theta=2$ Hence, the correct answer is 2.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $\sin^4\theta+\cos^4\theta=2\sin^2\theta \cos^2\theta$, where $\theta$ is an acute angle, then the value of $\tan\theta$ is:
Question : If $\operatorname{cos} \theta+\operatorname{sin} \theta=\sqrt{2} \operatorname{cos} \theta$, find the value of $(\cos \theta-\operatorname{sin} \theta)$
Question : If A is an acute angle and cot A + cosec A = 3, then the value of sin A is:
Question : If $\frac{1}{\operatorname{cosec} \theta+1}+\frac{1}{\operatorname{cosec} \theta-1}=2 \sec \theta, 0^{\circ}<\theta<90^{\circ}$, then the value of $\frac{\tan \theta+2 \sec \theta}{\operatorname{cosec} \theta}$ is:
Question : If $\cot \theta=\frac{1}{\sqrt{3}}, 0^{\circ}<\theta<90^{\circ}$, then the value of $\frac{2-\sin ^2 \theta}{1-\cos ^2 \theta}+\left(\operatorname{cosec}^2 \theta-\sec \theta\right)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile