Question : If $\alpha$ is an acute angle and $2\sin \alpha+15\cos^2\alpha=7$, then the value of $\cot \alpha$ is:
Option 1: $\frac{4}{3}$
Option 2: $\frac{4}{5}$
Option 3: $\frac{5}{4}$
Option 4: $\frac{3}{4}$
Correct Answer: $\frac{3}{4}$
Solution : Given: If $\alpha$ is an acute angle and $2\sin \alpha+15\cos^2 \alpha=7$. $2\sin \alpha+15\cos^2\alpha=7$ ⇒ $2\sin \alpha+15(1–\sin^2 \alpha)=7$ Let $\sin \alpha$ be $x$. ⇒ $2x+15(1–x^2)=7$ ⇒ $2x+15–15x^2=7$ ⇒ $15x^2–2x–8=0$ ⇒ $15x^2–12x+10x–8=0$ ⇒ $3x(5x–4)+2(5x–4)=0$ ⇒ $(5x–4)(3x+2)=0$ ⇒ $x=\frac{4}{5},\frac{–2}{3}$ $\sin \alpha=\frac{4}{5},\frac{–2}{3}$ Since $\alpha$ is an acute angle, the value of $\sin\alpha=\frac{4}{5}$ So, the $\text{Perpendicular}$ is 4 and the $\text{Hypotenuse}$ is 5. Using Pythagoras theorem, $(\text{Hypotenuse})^2=(\text{Base})^2+(\text{Perpendicular})^2$. ⇒ $(5)^2=(\text{Base})^2+4^2$ ⇒ $25=(\text{Base})^2+16$ ⇒ $(\text{Base})^2=9$ ⇒ $\text{Base}=3$ The value of $\cot\alpha$ is given as $\frac{\text{Base}}{\text{Perpendicular}}$ i.e., $\cot \alpha=\frac{3}{4}$ Hence, the correct answer is $\frac{3}{4}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $\cos ^4 \alpha-\sin ^4 \alpha=\frac{5}{6}$, then the value of $2 \cos ^2 \alpha-1$ is:
Question : If A is an acute angle and cot A + cosec A = 3, then the value of sin A is:
Question : If $\sin^4\theta+\cos^4\theta=2\sin^2\theta \cos^2\theta$, where $\theta$ is an acute angle, then the value of $\tan\theta$ is:
Question : If $\sin \theta+\cos \theta=\frac{\sqrt{11}}{3}$, then the value of $(\cos \theta-\sin \theta)$ is:
Question : If $\cot \theta=\frac{4}{3}, 0<\theta<\frac{\pi}{2}$, and $5 p \cos ^2 \theta \sin \theta=\cot ^2 \theta$, then the value of $p$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile