Question : If $\theta$ is an acute angle and $\sin \theta=\frac{21}{25}$, then what is the value of $\tan \theta$?
Option 1: $\frac{2 \sqrt{46}}{21}$
Option 2: $\frac{25}{2 \sqrt{46}}$
Option 3: $\frac{21}{2 \sqrt{46}}$
Option 4: $\frac{2 \sqrt{46}}{25}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{21}{2 \sqrt{46}}$
Solution : Given, $\theta < 90°$ and $\sin \theta=\frac{21}{25}$ We know, $\sin\theta = \frac{\text{Perpendicular}}{\text{Hypotenuse}}$ ⇒ Perpendicular = 21 and Hypotenuse = 25 Using Pythagoras theorem, Hypotenuse 2 = Perpendicular 2 + Base 2 ⇒ 25 2 = 21 2 + Base 2 ⇒ Base = $\sqrt{25^2-21^2}$ ⇒ Base = $\sqrt{625-441}$ = $\sqrt{184}$ = $2\sqrt{46}$ Now, $\tan \theta=\frac{\text{Perpendicular}}{\text{Base}}=\frac{21}{2\sqrt{46}}$ Hence, the correct answer is $\frac{21}{2\sqrt{46}}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\theta$ is an acute angle and $\sin \theta \cos \theta=2 \cos ^3 \theta-\frac{1}{4} \cos \theta$, then the value of $\sin \theta$ is:
Question : If $\tan\theta+\sec\theta=3$, $\theta$ being acute, the value of $5\sin\theta$ is:
Question : If $\tan\theta =\frac{3}{4}$, then the value of $\frac{4\sin^{2}\theta–2\cos^{2}\theta}{4\sin^{2}\theta+3\cos^{2}\theta}$ is equal to:
Question : If $\theta$ is an acute angle and $\cos\theta=\frac{11}{17}$, what is the value of $\tan\theta$?
Question : If $\sin 2\theta=\frac{\sqrt{3}}{2}$, then what is the value of $\tan \theta$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile