Question : If $\theta$ is an acute angle and $\sin \theta=\frac{13}{19}$, what is the value of $\cos \theta?$
Option 1: $\frac{6}{19}$
Option 2: $\frac{10 \sqrt{2}}{19}$
Option 3: $\frac{14}{19}$
Option 4: $\frac{8 \sqrt{3}}{19}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{8 \sqrt{3}}{19}$
Solution : Given: $\sin \theta=\frac{13}{19}$ We know, $\cos\theta=\sqrt{1-\sin^2\theta}$ $⇒\cos\theta=\sqrt{1-(\frac{13}{19})^2}$ $⇒\cos\theta=\sqrt{1-\frac{169}{361}}$ $⇒\cos\theta=\sqrt{\frac{192}{361}}$ $\therefore \cos\theta=\frac{8\sqrt3}{19}$ Hence, the correct answer is $\frac{8\sqrt3}{19}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\theta$ is an acute angle and $\sin \theta \cos \theta=2 \cos ^3 \theta-\frac{1}{4} \cos \theta$, then the value of $\sin \theta$ is:
Question : If $\theta$ is an acute angle and $\sin \theta=\frac{43}{47}$, what is the value of $\cot \theta$?
Question : If $\theta$ is an acute angle and $\cos\theta=\frac{11}{17}$, what is the value of $\tan\theta$?
Question : If $\sin \theta \cos \theta=\frac{\sqrt{2}}{3}$,then the value of $\left(\sin ^6 \theta+\cos ^6 \theta\right)$ is:
Question : If $\cos\theta - \sin\theta =0$, then $(\sin^8\theta+\cos^8\theta)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile