Question : If $\theta$ is an acute angle and $\cos\theta=\frac{11}{17}$, what is the value of $\tan\theta$?
Option 1: $\frac{4 \sqrt{10}}{11}$
Option 2: $\frac{13}{11}$
Option 3: $\frac{2 \sqrt{42}}{11}$
Option 4: $\frac{2 \sqrt{42}}{17}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{2 \sqrt{42}}{11}$
Solution : Given: $\cos\theta=\frac{11}{17}$ Let the Base = 11 units and the Hypotenuse = 17 units We know, $\text{Perpendicular} = \sqrt{(\text{Hypotenuse})^2–(\text{Base})^2}$ So, $\text{Perpendicular} = \sqrt{17^2–11^2}=\sqrt{289–121}=\sqrt{168}=2\sqrt{42}$ units Therefore, $\tan\theta=\frac{\text{Perpendicular}}{\text{Base}}=\frac{2\sqrt{42}}{11}$ Hence, the correct answer is $\frac{2\sqrt{42}}{11}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\theta$ is an acute angle and $\sin \theta \cos \theta=2 \cos ^3 \theta-\frac{1}{4} \cos \theta$, then the value of $\sin \theta$ is:
Question : If $\theta$ is a positive acute angle and $4\cos ^{2}\theta -4\cos \theta +1=0$, then the value of $\tan (\theta -15^{\circ})$is equal to:
Question : If $\theta$ is an acute angle and $\sin \theta=\frac{13}{19}$, what is the value of $\cos \theta?$
Question : If $4\sin^{2}\theta-1=0$ and angle $\theta$ is less then $90^{\circ}$, the value of $\cos^{2}\theta+\tan^{2}\theta$ is: (Take $0^{\circ}< \theta< 90^{\circ}$)
Question : If $\tan\theta+\sec\theta=3$, $\theta$ being acute, the value of $5\sin\theta$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile