Question : If $α$ is an acute angle, $\tan (4α − 50°) = \cot (50° − α)$, then find the value of $α$ (in degrees).
Option 1: 60
Option 2: 45
Option 3: 30
Option 4: 90
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 30
Solution : $\tan (4α − 50°)$ = $\cot (50° − α)$ = $\tan(90°–(50° − α))$ ⇒ $\tan (4α − 50°)$ = $\tan(90°–(50° − α))$ ⇒ $(4α − 50°) = 90°–(50° − α)$ ⇒ $4α − 50° = 40°+α$ ⇒ $3α = 90°$ ⇒ $α = 30°$ Hence, the correct answer is 30.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\theta>0$ be an acute angle, then the value of $\theta$ in degrees satisfying $\frac{\cos^2\theta-3 \cos\theta+2}{\sin^2\theta}=1$ is:
Question : If $\sec( 4x-50°)=\operatorname{cosec}( 50°-x)$, then the value of $x$ is:
Question : If $\tan (A+B)=\sqrt{3}$ and $\tan (A-B)=\frac{1}{\sqrt{3}}; 0°<(A+B)<90°; A > B$, then the values of $A$ and $B$ are respectively:
Question : If $\theta$ is an acute angle and $\tan \theta+\cot \theta=2$, then the value of $\tan ^{200} \theta+\cot ^{200} \theta$ is:
Question : The value of $\frac{2 \tan 60^{\circ}}{1+\tan ^2 60^{\circ}}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile