Question : If $\frac{3}{(x+2)(2x+1)}=\frac{a}{2x+1}+\frac{b}{x+2}$ is an identity, the value of $b$ is:
Option 1: 0
Option 2: –1
Option 3: 2
Option 4: 3
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: –1
Solution : Given: $\frac{3}{(x+2)(2x+1)}=\frac{a}{2x+1}+\frac{b}{x+2}$ $⇒\frac{3}{(x+2)(2x+1)}=\frac{a(x+2)+b(2x+1)}{(2x+1)(x+2)}$ $⇒3=a(x+2)+b(2x+1)$ To eliminate the term '$a$' we have to put $x = -2$, $⇒3=a(–2+2)+b(2×(–2)+1)$ $⇒3=–3b$ $⇒b=–1$ Hence, the correct answer is –1.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\frac{3–5x}{2x}+\frac{3–5y}{2y}+\frac{3–5z}{2z}=0$, the value of $\frac{2}{x}+\frac{2}{y}+\frac{2}{z}$ is:
Question : If $2x=\sqrt{a}+\frac{1}{\sqrt{a}}, a>0$, then the value of $\frac{\sqrt{x^{2}-1}}{x-\sqrt{x^{2}-1}}$ is:
Question : If $2x-\frac{2}{x}=1(x \neq 0)$, then the the value of $(x^3-\frac{1}{x^3})$ is:
Question : If $(x+\frac{1}{x})^{2}=3$, then the value of $(x^{3}+\frac{1}{x^{3}})$ is:
Question : If $x^{2}+\frac{1}{x^{2}} = 98(x>0)$, then the value of $x^{3}+\frac{1}{x^{3}}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile