Question : If $\sin \beta=\frac{1}{3},(\sec \beta-\tan \beta)^2$ is equal to:
Option 1: $\frac{3}{4}$
Option 2: $\frac{2}{3}$
Option 3: $\frac{1}{2}$
Option 4: $\frac{1}{3}$
Correct Answer: $\frac{1}{2}$
Solution : Given: $\sin \beta=\frac{1}{3}$ We know that $ \cos \beta\ =\ \sqrt{1\ -\ \sin^{2}\beta}\ =\ \sqrt{1\ -\ \frac{1}{9}}\ =\ \frac{\sqrt{8}}{3}$ $\Rightarrow \sec \beta\ =\ \frac{1}{\cos \beta}\ =\ \frac{3}{\sqrt{8}}$ $\Rightarrow \tan \beta\ =\ \frac{\sin\beta}{\cos \beta}\ =\ \frac{\frac{1}{3}}{\frac{\sqrt{8}}{3}}\ =\ \frac{1}{\sqrt{8}}$ Now, $(\sec \beta-\tan \beta)^2$ $=\ \left ( \frac{3}{\sqrt{8}}\ -\ \frac{1}{\sqrt{8}} \right )^2$ $=\ \left ( \frac{2}{\sqrt{8}} \right )^2$ $=\ \frac{1}{2}$ Hence, the correct answer is $\frac{1}{2}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : $\sqrt{\frac{1+\sin\theta}{1-\sin\theta}}+\sqrt{\frac{1-\sin\theta}{1+\sin\theta}}$ is equal to:
Question : The value of $\frac{\sin ^2 30^{\circ}+\cos ^2 60^{\circ}-\sec 35^{\circ} \cdot \sin 55^{\circ}}{\sec 60^{\circ}+\operatorname{cosec} 30^{\circ}}$ is equal to:
Question : The value of $\sqrt{\frac{1+\sin A}{1-\sin A}}$ is:
Question : If $\cos\theta=\frac{3}{5}$, then the value of $\sin\theta.\sec\theta.\tan\theta$ is:
Question : Find the value of $\sqrt{\frac{1-\tan A}{1+\tan A}}$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile