Question : If $\theta$ is positive acute angle and $7\cos^{2}\theta+3\sin^{2}\theta =4$, then the value of $\theta$ is:
Option 1: $60^{\circ}$
Option 2: $30^{\circ}$
Option 3: $45^{\circ}$
Option 4: $90^{\circ}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $60^{\circ}$
Solution : $7\cos^{2}\theta +3\sin^{2}\theta = 4$ $⇒7\cos^{2}\theta +3(1-\cos^{2}\theta) = 4$ ........[we know that $\sin^{2}\theta + \cos^{2}\theta=1$] $⇒4\cos^{2}\theta +3 = 4$ $⇒\cos^{2}\theta = \frac{1}{4}$ $⇒\cos^{2}\theta - \frac{1}{4}$ = 0 $⇒(\cos\theta + \frac{1}{2})(\cos\theta - \frac{1}{2})$ = 0 $⇒\cos\theta =\frac{1}{2}\ \text{or,} -\frac{1}{2}$ $⇒\cos\theta =\cos 60^{\circ}\ \text{or,}\cos 120^{\circ}$ Since $\theta$ is a positive acute angle, So, $\theta = 60^{\circ}$ Hence, the correct answer is $60^{\circ}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $0\leq\theta\leq 90^{\circ}$ and $4\cos^{2}\theta-4\sqrt{3}\cos\theta+3=0$, then the value of $\theta$ is:
Question : The value of $\theta$ $ \left ( 0\leq \theta \leq 90^{\circ} \right )$ satisfying $2\sin^{2}\theta = 3\cos \theta$ is:
Question : If $\theta>0$ be an acute angle, then the value of $\theta$ in degrees satisfying $\frac{\cos^2\theta-3 \cos\theta+2}{\sin^2\theta}=1$ is:
Question : The value of $\left(\sin 30^{\circ} \cos 60^{\circ}-\cos 30^{\circ} \sin 60^{\circ}\right)$ is equal to:
Question : For any acute angle $\theta, \sin \theta+\sin^2 \theta=1$, then the value of $\cos^2 \theta+\cos^4 \theta=$___________.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile