Question : If $\triangle \mathrm{ABC}$ is right angled at $B, A B = 12 \mathrm{~cm},$ and $\angle \mathrm{CAB} = 60^{\circ}$, determine the length of BC.
Option 1: $12 \sqrt{2} \mathrm{~cm}$
Option 2: $12\mathrm{~cm}$
Option 3: $12 \sqrt{3} \mathrm{~cm}$
Option 4: $24 \sqrt{3} \mathrm{~cm}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $12 \sqrt{3} \mathrm{~cm}$
Solution : Given: AB = 12 cm AC is the hypotenuse of the triangle. We have to find tan of $\angle CAB = \tan 60° = \frac{\text{BC}}{\text{AB}}$ $⇒\sqrt{3} = \frac{\text{BC}}{12}$ $\therefore\text{BC} = 12\sqrt{3}\mathrm{~cm}$ Hence, the correct answer is $12\sqrt{3}\mathrm{~cm}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\triangle A B C$ is right angled at $B, A B=12 \mathrm{~cm}$ and $\angle C A B=60^{\circ}$, determine the length of $BC$.
Question : If $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}, \mathrm{BC}=6 \mathrm{~cm}$, and $\angle \mathrm{A}=75^{\circ}$, then which one of the following is true?
Question : In a $\triangle ABC$, if $\angle A=90^{\circ}, AC=5 \mathrm{~cm}, BC=9 \mathrm{~cm}$ and in $\triangle PQR, \angle P=90^{\circ}, PR=3 \mathrm{~cm}, QR=8$ $\mathrm{cm}$, then:
Question : $\triangle PQR$ is right-angled at $Q$. The length of $PQ$ is 5 cm and $\angle P R Q=30^{\circ}$. Determine the length of the side $QR$.
Question : Suppose $\triangle A B C$ be a right-angled triangle where $\angle A=90^{\circ}$ and $A D \perp B C$. If area $(\triangle A B C)$ $=80 \mathrm{~cm}^2$ and $BC=16$ cm, then the length of $AD$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile