Question : If $\frac{\sin ^2 \theta}{\cos ^2 \theta-3 \cos \theta+2}=1, \theta$ lies in the first quadrant, then the value of $\frac{\tan ^2 \frac{\theta}{2}+\sin ^2 \frac{\theta}{2}}{\tan \theta+\sin \theta}$ is:
Option 1: $\frac{2 \sqrt{3}}{27}$
Option 2: $\frac{5 \sqrt{3}}{27}$
Option 3: $\frac{2 \sqrt{3}}{9}$
Option 4: $\frac{7 \sqrt{3}}{54}$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\frac{7 \sqrt{3}}{54}$
Solution : Given that $\frac{\sin ^2 \theta}{\cos ^2 \theta-3 \cos \theta+2}=1$, $⇒\sin ^2 \theta = \cos ^2 \theta-3 \cos \theta+2$ $⇒\cos ^2 \theta - \sin ^2 \theta - 3 \cos \theta + 2 = 0$ Since $\cos ^2 \theta = 1 - \sin ^2 \theta$, $⇒1 - 2 \sin ^2 \theta - 3 \cos \theta + 2 = 0$ $⇒2 \sin ^2 \theta + 3 \cos \theta - 3 = 0$ Now, we know that $\sin ^2 \theta = 1 - \cos ^2 \theta$, $⇒2 (1 - \cos ^2 \theta) + 3 \cos \theta - 3 = 0$ $⇒2 - 2 \cos ^2 \theta + 3 \cos \theta - 3 = 0$ $⇒2 \cos ^2 \theta - 3 \cos \theta + 1 = 0$ $⇒( \cos \theta -1)( 2\cos \theta-1 )=0$ $⇒\cos \theta = \frac{1}{2}$ or, $⇒\cos \theta = 1$ $⇒\theta=60^{\circ}$ or $\theta=0^{\circ}$ But $\theta=0^{\circ}$ does not satisfy the given equation, So, $\theta =60^{\circ}$ Substituting these values into the expression, $\frac{\tan ^2 \frac{\theta}{2}+\sin ^2 \frac{\theta}{2}}{\tan \theta+\sin \theta}=\frac{\tan ^2 \frac{60^{\circ}}{2}+\sin ^2 \frac{60^{\circ}}{2}}{\tan60^{\circ}+\sin 60^{\circ}}=\frac{\tan ^230^{\circ}+\sin ^230^{\circ}}{\tan60^{\circ}+\sin 60^{\circ}}=\frac{\frac{1}{3}+ \frac{1}{4}}{\sqrt3+ \frac{\sqrt3}{2}}=\frac{\frac{7}{12}}{ \frac{3\sqrt3}{2}}=\frac{7 \sqrt{3}}{54}$ Hence, the correct answer is $\frac{7 \sqrt{3}}{54}$.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : If $7 \sin ^2 \theta+4 \cos ^2 \theta=5$ and $\theta$ lies in the first quadrant, then what is the value of $\frac{\sqrt{3} \sec \theta+\tan \theta}{\sqrt{2} \cot \theta-\sqrt{3} \cos \theta}$?
Question : If $\tan\theta=1$, then the value of $\frac{8\sin\theta\:+\:5\cos\theta}{\sin^{3}\theta\:–\:2\cos^{3}\theta\:+\:7\cos\theta}$ is:
Question : If $\sin \theta-\cos \theta=\frac{4}{5}$, then find the value of $\sin \theta+\cos \theta$.
Question : If $\sqrt{3} \tan \theta=3 \sin \theta$, then what is the value of $\sin ^2 \theta-\cos ^2 \theta$?
Question : If $\cos\theta+\sin\theta=\sqrt{2}\cos\theta$, then $\cos\theta-\sin\theta$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile