Question : If the angle of elevation of a balloon from two consecutive kilometre stones along a road are 30° and 60° respectively, then the height of the balloon above the ground will be:

Option 1: $\frac{\sqrt{3}}{2}$ km

Option 2: $\frac{1}{2}$ km

Option 3: $\frac{2}{\sqrt{3}}$ km

Option 4: $3\sqrt{3}$ km


Team Careers360 7th Jan, 2024
Answer (1)
Team Careers360 15th Jan, 2024

Correct Answer: $\frac{\sqrt{3}}{2}$ km


Solution :
Let the height of the balloon be $h$.
$\tan60°=\frac{h}{x}$
⇒ $\sqrt{3}=\frac{h}{x}$
⇒ $x=\frac{h}{\sqrt{3}}$ ------(1)
$\tan30°=\frac{h}{x+1}$
⇒ $\frac{1}{\sqrt{3}}=\frac{h}{\frac{h}{\sqrt{3}}+1}$
⇒ $\frac{1}{\sqrt{3}}=\frac{\sqrt{3}h}{h+\sqrt{3}}$
⇒ $3h=h+\sqrt{3}$
⇒ $2h=\sqrt{3}$
⇒ $h=\frac{\sqrt{3}}{2}$ km
Hence, the correct answer is $\frac{\sqrt{3}}{2}$ km.

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books