7 Views

Question : If the diagonals of a rhombus are 10 cm and 24 cm, then what is the perimeter of the rhombus?

Option 1: 50 cm

Option 2: 60 cm

Option 3: 56 cm

Option 4: 52 cm


Team Careers360 18th Jan, 2024
Answer (1)
Team Careers360 19th Jan, 2024

Correct Answer: 52 cm


Solution :
In a rhombus, the diagonals bisect each other at right angles.
Therefore, we can form a right-angle triangle using half of each diagonal as the sides.
Let the half diagonals as $a$ and $b$.
$⇒a = \frac{10}{2} = 5 \text{ cm}$
$⇒b = \frac{24}{2} = 12 \text{ cm}$
Using the Pythagorean theorem,
$\text{Side} = \sqrt{a^2 + b^2} = \sqrt{5^2 + 12^2} = \sqrt{169} = 13 \text{ cm}$
The perimeter of a rhombus is four times the length of a side,
Perimeter = 4 × Side = 4 × 13 = 52 cm
Hence, the correct answer is 52 cm.

How to crack SSC CHSL

Candidates can download this e-book to give a boost to thier preparation.

Download Now

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books