Question : If the equation k(21x2 + 24) + rx + (14x2 – 9) = 0, k(7x2 + 8) + px + (2x2 – 3) = 0 have both roots common, then the value of $\frac{p}{r}$ is:
Option 1: $\frac{1}{3}$
Option 2: $\frac{2}{5}$
Option 3: $\frac{4}{3}$
Option 4: $\frac{7}{5}$
Correct Answer: $\frac{1}{3}$
Solution : Since the roots of the equation are common, the coefficients are in proportion. The equation 1 can be written as, (21k +14)x 2 + rx + 24k – 9 = 0 The equation 2 can be written as, (7k + 2)x 2 + px + 8k – 3 = 0 Therefore, $\frac{21k+14}{7k+2} = \frac{r}{p} = \frac{24k-9}{8k-3}$ $⇒\frac{r}{p} = \frac{24k−9}{8k−3}$ $⇒\frac{r}{p} = \frac{3 \times (8k−3)}{(8k−3)}$ $⇒\frac{r}{p} = \frac{3}{1}$ $\therefore\frac{p}{r}=\frac{1}{3}$ Hence, the correct answer is $\frac{1}{3}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : What is the value of m in the quadratic equation $x^{2}+mx+24=0$, if one of its roots is $\frac{3}{2}$.
Question : The value of $2 \frac{1}{3} \div 2 \frac{1}{2}$ of $1 \frac{3}{5}+\left(\frac{3}{8}+\frac{1}{7} \times 1 \frac{3}{4}\right)$ is:
Question : The value of $3 \frac{1}{3} \div 2 \frac{1}{2}$ of $1 \frac{3}{5}+\left(\frac{3}{8}+\frac{1}{7} \times 1 \frac{3}{4}\right)$ is:
Question : If $x^{2}+1=2x$, then the value of $\frac{x^{4}+\frac{1}{x^{2}}}{x^{2}-3x+1}$ is:
Question : The value of (1+ sin4 A – cos4 A) cosec2 A is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile