Question : If the numbers $\sqrt[3]{9}, \sqrt[4]{20}$ and $\sqrt[6]{25}$ are arranged in ascending order, then the right arrangement is:
Option 1: $\sqrt[6]{25}<\sqrt[4]{20}< \sqrt[3]{9}$
Option 2: $\sqrt[3]{9}<\sqrt[4]{20}<\sqrt[6]{25}$
Option 3: $\sqrt[4]{20}<\sqrt[6]{25}<\sqrt[3]{9}$
Option 4: $\sqrt[6]{25}<\sqrt[3]{9}<\sqrt[4]{20}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\sqrt[6]{25}<\sqrt[3]{9}<\sqrt[4]{20}$
Solution : Given: The numbers are $\sqrt[3]{9}$, $\sqrt[4]{20}$, $\sqrt[6]{25}$. LCM of 3, 4, and 6 = 12 $⇒ \sqrt[3]{9}=9^{\frac{1}{3}}=9^{\frac{4}{12}}=\sqrt[12]{6561}$ $⇒ \sqrt[4]{20}=20^{\frac{1}{4}}=20^{\frac{3}{12}}=\sqrt[12]{8000}$ $⇒ \sqrt[6]{25}=25^{\frac{1}{6}}=25^{\frac{2}{12}}=\sqrt[12]{625}$ By comparing these values, we get: $\sqrt[12]{625}<\sqrt[12]{6561}<\sqrt[12]{8000}$ $⇒\sqrt[6]{25}<\sqrt[3]{9}<\sqrt[4]{20}$ Hence, the correct answer is $\sqrt[6]{25}<\sqrt[3]{9}<\sqrt[4]{20}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\left(x^2+\frac{1}{x^2}\right)=6$ and $0<x<1$, what is the value of $x^4-\frac{1}{x^4}$?
Question : If $\left(x^2 - \frac{1}{x^2}\right) = 4 \sqrt{6}$ and $x>1$, what is the value of $\left(x^3 - \frac{1}{x^3}\right)?$
Question : Which of the following statement(s) is/are true? I. $\sqrt{12}<\sqrt[3]{16}<\sqrt[4]{24}$ II. $\sqrt[3]{25}>\sqrt[4]{32}>\sqrt[6]{48}$ III. $\sqrt[4]{9}>\sqrt[3]{15}>\sqrt[6]{24}$
Question : In a triangle $XYZ$ right-angled at $Y$, if $XY=2\sqrt{6}$ and $XZ-YZ=2$, then $\sec X+\tan X$ is:
Question : $AB$ and $AC$ are the two tangents to a circle whose radius is 6 cm. If $\angle BAC=60^{\circ}$, then what is the value (in cm) of $\sqrt{\left ( AB^{2}+AC^{2} \right )}?$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile