Question : If the ordinate and abscissa of the point $(k,2k-1)$ are equal, then the value of $k$ is:
Option 1: $0$
Option 2: $–1$
Option 3: $1$
Option 4: $\frac{1}{2}$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $1$
Solution : Given: The ordinate and abscissa of the point $(k, 2k-1)$ are equal. So, $k=2k-1$ ⇒ $k=1$ Hence, the correct answer is $1$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $\mathrm{K}+\frac{1}{\mathrm{~K}}+2=0$ and $\mathrm{K}<0$, then what is the value of $\mathrm{K}^{11}+\frac{1}{\mathrm{~K}^4}$?
Question : If $\mathrm{K}+\frac{1}{\mathrm{~K}}+2=0$ and $\mathrm{K}<0$, then what is the value of $\mathrm{K}^{10}+\frac{1}{\mathrm{~K}^{11}}$?
Question : If $a+b=2c$, then the value of $\frac{a}{a–c}+\frac{c}{b–c}$ is equal to (where $a\neq b\neq c$):
Question : If $(x+\frac{1}{x})^{2}=3$, then the value of $(x^{3}+\frac{1}{x^{3}})$ is:
Question : If $(a+\frac{1}{a})=–2$, then the value of $a^{1000}+a^{–1000}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile