Question : If the perimeter of circle A is equal to the perimeter of semicircle B, what is the ratio of their areas?
Option 1: $\left (x+ 2\right)^{2} : 2\pi ^{2}$
Option 2: $2\pi ^{2} : \left ( x+2 \right)^{2}$
Option 3: $\left (\pi +2 \right )^{2} : 4\pi ^{2}$
Option 4: $4\pi ^{2}:\left ( \pi +2 \right)^{2}$
Correct Answer: $\left (\pi +2 \right )^{2} : 4\pi ^{2}$
Solution : Let the radius of circle A be r 1 units and the radius of semicircle B is r 2 units. According to the question, 2$\pi$r 1 = $\pi$r 2 + 2r 2 ⇒ 2$\pi$r 1 = r 2 ($\pi$+2) ⇒ $\frac{r_{1}}{r_{2}}=\frac{\pi+2}{2\pi}$ $\therefore$ Ratio of their areas = $\frac{\pi(r_{1})^{2}}{\pi(r_{2})^{2}} = \frac{(\pi+2)^{2}}{(2\pi)^{2}}=(\pi+2)^{2} : 4\pi^{2}$ Hence, the correct answer is $(\pi+2)^{2} : 4\pi^{2}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If the perimeter of the circle is 13.2 cm, then the radius of the circle is___________. $\left(\right.$ Take $\left.\pi=\frac{22}{7}\right)$
Question : If $x^2-3 x+1=0$, then the value of $\left(x^4+\frac{1}{x^2}\right) \div\left(x^2+1\right)$ is:
Question : If $\frac{1}{x^{2}}+x^{2}$ represents the radius of circle $P$ and $\frac{1}{x}+x=17$, which of the following best approximates the circumference of circle $P$?
Question : If $x^2-5 x+1=0$, then the value of $\left(x^4+\frac{1}{x^2}\right) \div\left(x^2+1\right)$ is:
Question : What is $\frac{\left (x^{2}-y^{2} \right)^{3}+\left (y^{2}-z^{2} \right )^{3}+\left (z^{2}-x^{2} \right )^{3}}{\left (x-y \right)^{3}+\left (y-z \right )^{3}+\left (z-x \right)^{3}}?$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile