6 Views

Question : If the sum of squares of two real numbers is 41 and their sum is 9, then the sum of cubes of these two numbers is:

Option 1: 169

Option 2: 209

Option 3: 189

Option 4: 198


Team Careers360 17th Jan, 2024
Answer (1)
Team Careers360 18th Jan, 2024

Correct Answer: 189


Solution : Let the two numbers be $\text{x}$ and $\text{y}$.
As per the condition of the question,
⇒ $\text{x}^{2} + \text{y}^{2}$ = 41 and  $\text{x + y} = 9$
We know $\text{(x + y)}^{2} = \text{x}^{2} + \text{y}^{2} + \text{2xy}$
Putting values in the given expression:
$\text{(9)}^{2} = 41 + \text{2xy}$
⇒ $\text{2xy} = 81 - 41$
⇒ $\text{xy} = \frac{40}{2} = 20$
Using the formula, $\text{x}^{3} + \text{y}^{3} = \text{(x + y)}^{3}- \text{3xy}\text{(x+y)}$, we get,
$\text{x}^{3} + \text{y}^{3} = \text{(9)}^{3}- 3\times20\times 9$
⇒ $\text{x}^{3} + \text{y}^{3} = 729- 540 = 189$
Hence, the correct answer is 189.

SSC CGL Complete Guide

Candidates can download this ebook to know all about SSC CGL.

Download EBook

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books