Question : If the sum of the diagonals of a rhombus is $L$ and the perimeter is $4P$, find the area of the rhombus.
Option 1: $\frac{1}{4}\left(\mathrm{~L}^2-\mathrm{P}^2\right)$
Option 2: $\frac{1}{2}\left(\mathrm{~L}^2-4 \mathrm{P}^2\right)$
Option 3: $\frac{1}{4}\left(\mathrm{~L}^2+3 \mathrm{P}^2\right)$
Option 4: $\frac{1}{4}\left(\mathrm{~L}^2-4 \mathrm{P}^2\right)$
New: SSC MTS 2024 Application Form OUT; Direct Link
Don't Miss: Month-wise Current Affairs | Upcoming Government Exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{1}{4}\left(\mathrm{~L}^2-4 \mathrm{P}^2\right)$
Solution : Perimeter = $4P$ ⇒ 4 × side = $4P$ ⇒ Side = $P$ Let $d_1$ and $d_2$ be the diagonals. The sum of the diagonals = $L$ ⇒ $d_1+d_2$ = L ----------------------(i) Now, (Side)$^2$ = $(\frac{d_1}{2})^2 + (\frac{d_2}{2})^2$ ⇒ $P^2 = (\frac{d_1}{2})^2 + (\frac{d_2}{2})^2$ ⇒ $d_1^2+d_2^2 = 4P^2$ ⇒ $(d_1+d_2)^2-2d_1d_2 = 4P^2$ ⇒ $L^2-2d_1d_2 = 4P^2$ ⇒ $d_1d_2 = \frac{L^2-4P^2}{2}$ So, the area of the rhombus = $\frac{1}{2}d_1d_2 = \frac{L^2-4P^2}{4}$ Hence, the correct answer is $\frac{1}{4}(L^2-4P^2)$.
Application | Cutoff | Selection Process | Preparation Tips | Eligibility | Exam Pattern | Admit Card
Question : The value of $\frac{1}{8} × \left[\frac{1}{5}\right.$ of $\left.\frac{11}{2} ÷\left\{\left(\frac{15}{3}-\frac{18}{6}\right)\right\}\right]$ is:
Question : The value of $\left[\frac{1}{4}\right.$ of $\left.18 \div \frac{6}{5} \text{of}\left(\frac{1}{8}+\frac{7}{4}\right)\right] \times \frac{1}{15}$ is:
Question : The value of $\frac{3}{8}+\left[\left(\frac{4}{8} \div \frac{2}{3}\right) \times \frac{8}{5}+\frac{3}{10}\right]$ is:
Question : The lengths of the diagonals of a rhombus are 48 cm and 20 cm. What is the perimeter of the rhombus?
Question : What is the value of $\left[\frac{1}{5}+\left\{\frac{1}{6}\right.\right.$ of $\left.\left.\left(\frac{42}{35} \div \frac{6}{25}\right)–\left(\frac{2}{7} \times \frac{6}{5} \div \frac{18}{42}\right)\right\}+\frac{19}{30}\right]$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile