Question : If the sum of the diagonals of a rhombus is $L$ and the perimeter is $4P$, find the area of the rhombus.
Option 1: $\frac{1}{4}\left(\mathrm{~L}^2-\mathrm{P}^2\right)$
Option 2: $\frac{1}{4}\left(\mathrm{~L}^2-4 \mathrm{P}^2\right)$
Option 3: $\frac{1}{2}\left(\mathrm{~L}^2-4 \mathrm{P}^2\right)$
Option 4: $\frac{1}{4}\left(\mathrm{~L}^2+3 \mathrm{P}^2\right)$
Correct Answer: $\frac{1}{4}\left(\mathrm{~L}^2-4 \mathrm{P}^2\right)$
Solution : Given: The sum of the diagonals of a rhombus is $L$. Perimeter = $4P$ ⇒ Sides = $\frac{4P}{4}$ = $P$ Now, the sum of the diagonals = $L$ Let one of the diagonal be $d_1$ and another diagonal be $d_2$. ⇒ $(\frac{d_1}{2})^2 + (\frac{d_2}{2})^2 = P^2 $ ⇒ $d_1^2+d_2^2=4P^2$ ⇒ $(d_1+d_2)^2-2d_1d_2=4P^2$ as $[a^2 + b^2 = ( a + b)^2 - 2ab]$ ⇒ $L^2-2d_1d_2=4P^2$ as $[d_1+d_2=L]$ ⇒ $2d_1d_2=L^2-4P^2$ ⇒ $d_1d_2=\frac{L^2-4P^2}{2}$ $\therefore$ Area of the Rhombus = $\frac{1}{2} × d_1× d_2 $ = $\frac{1}{2} × \frac{L^2-4P^2}{2}$ = $\frac{1}{4} (L^2-4P^2)$ Hence, the correct answer is $\frac{1}{4} (L^2-4P^2)$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : The next term of the sequence $\left (1+\frac{1}{2} \right):\left (1+\frac{1}{2} \right) \left (1+\frac{1}{3} \right): \left (1+\frac{1}{2} \right)\left (1+\frac{1}{3} \right)\left (1+\frac{1}{4} \right): .........$ is:
Question : The value of $\left[1 \frac{2}{7} \times\left\{3 \frac{1}{2} \div\left(\frac{1}{2}-\frac{1}{7}\right)\right\}\right] \div\left(4 \frac{1}{5} \times 1 \frac{1}{2}\right)$ is:
Question : If the perimeter of a rhombus is 40 cm and one of its diagonals is 16 cm, what is the area (in cm2) of the rhombus?
Question : If $\sec A - \tan A = p$, then find the value of $\sec A$.
Question : The value of $1 \frac{2}{5}-\left[3 \frac{3}{4} \div\left\{1 \frac{1}{4} \div \frac{1}{2}\left(1 \frac{1}{2} \times 3 \frac{1}{3} \div 1 \frac{1}{3}\right)\right\}\right]$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile