Question : If $x=\sqrt[3]{2+\sqrt{3}}$, the value of $x^3+\frac{1}{x^3}$ is:
Option 1: 8
Option 2: 9
Option 3: 2
Option 4: 4
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 4
Solution : Given: $x=\sqrt[3]{2+\sqrt{3}}$ ⇒ $x^3=2+\sqrt{3}$ So, $\frac{1}{x^3}=\frac{1}{2+\sqrt{3}}×\frac{2-\sqrt{3}}{2-\sqrt{3}}=2-\sqrt{3}$ $\therefore x^3+\frac{1}{x^3}=2+\sqrt{3}+2-\sqrt{3}=4$ Hence, the correct answer is 4.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x^2-\frac{1}{x^2}=4 \sqrt{2}$, what is the value of $x^4-\frac{1}{x^4}?$
Question : If $\left(x+\frac{1}{x}\right)=\sqrt{6}$ and $x>1$, what is the value of $\left(x^8-\frac{1}{x^8}\right)$?
Question : If $\cos27^{\circ}$ = $x$, then the value of $\tan 63°$ is:
Question : If $\left(x^2 - \frac{1}{x^2}\right) = 4 \sqrt{6}$ and $x>1$, what is the value of $\left(x^3 - \frac{1}{x^3}\right)?$
Question : If $\left(x-\frac{1}{x}\right)^2=12$, what is the value of $\left(x^2-\frac{1}{x^2}\right)$, given that $x>0$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile