Question : If $n= 7+4\sqrt{3}$, the value of $(\sqrt{n}+\frac{1}{\sqrt{n}})$ is:
Option 1: $2\sqrt{3}$
Option 2: $4$
Option 3: $-4$
Option 4: $-2\sqrt{3}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $4$
Solution : Given: $n= 7+4\sqrt{3}$ So, $\sqrt{n}=\sqrt{7+4\sqrt{3}}=\sqrt{2^2+(\sqrt{3})^2+2×2×\sqrt{3}}=\sqrt{(2+\sqrt{3})^2}=2+\sqrt{3}$ Therefore, $\frac{1}{\sqrt{n}}=\frac{1}{(2\:+\:\sqrt{3})}×\frac{(2\:-\:\sqrt{3})}{(2\:-\:\sqrt{3})}=(2-\sqrt{3})$ So, $(\sqrt{n}+\frac{1}{\sqrt{n}})=2+\sqrt{3}+2-\sqrt{3}=4$ Hence, the correct answer is $4$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : What is the value of $\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}–\sqrt{5}} \div \frac{\sqrt{14}+\sqrt{10}}{\sqrt{14}–\sqrt{10}}+\frac{\sqrt{10}}{\sqrt{5}}$?
Question : If $(2+\sqrt{3})a=(2-\sqrt{3})b=1$, then the value of $\frac{1}{a}+\frac{1}{b}$ is:
Question : The value of $\frac{1}{4-\sqrt{15}}-\frac{1}{\sqrt{15}-\sqrt{14}}+\frac{1}{\sqrt{14}-\sqrt{13}}-\frac{1}{\sqrt{13}-\sqrt{12}}+\frac{1}{\sqrt{12}-\sqrt{11}}-\frac{1}{\sqrt{11}-\sqrt{10}}+\frac{1}{\sqrt{10}-3}-\frac{1}{3-\sqrt{8}}$ is:
Question : In a right triangle for an acute angle $x$, if $\sin x=\frac{3}{7}$, then find the value of $\cos x$.
Question : When $2x+\frac{2}{x}=3$, then the value of ($x^3+\frac{1}{x^3}+2)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile