Question : If $\frac{3–5x}{2x}+\frac{3–5y}{2y}+\frac{3–5z}{2z}=0$, the value of $\frac{2}{x}+\frac{2}{y}+\frac{2}{z}$ is:
Option 1: 20
Option 2: 5
Option 3: 10
Option 4: 15
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 10
Solution : Given: $\frac{3–5x}{2x}+\frac{3–5y}{2y}+\frac{3–5z}{2z}=0$ ⇒ $\frac{3}{2x}–\frac{5x}{2x}+\frac{3}{2y}–\frac{5y}{2y}+\frac{3}{2z}–\frac{5z}{2z}=0$ ⇒ $\frac{3}{2x}+\frac{3}{2y}+\frac{3}{2z}–\frac{5x}{2x}–\frac{5y}{2y}–\frac{5z}{2z}=0$ ⇒ $\frac{3}{2}(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})–\frac{5}{2}–\frac{5}{2}–\frac{5}{2}=0$ ⇒ $\frac{3}{2}(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=\frac{5}{2}+\frac{5}{2}+\frac{5}{2}$ ⇒ $(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=\frac{15}{2}×\frac{2}{3}$ ⇒ $2(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=\frac{15}{2}×\frac{2}{3}×2$ ⇒ $\frac{2}{x}+\frac{2}{y}+\frac{2}{z}=10$ Hence, the correct answer is 10.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : If $x+y+z=0$ and $x^2+y^2+z^2=40$, then what is the value of $x y+y z+z x?$
Question : $\text { If } x^2+y^2+z^2=x y+y z+z x \text { and } x=1 \text {, then find the value of } \frac{10 x^4+5 y^4+7 z^4}{13 x^2 y^2+6 y^2 z^2+3 z^2 x^2}$.
Question : If $x+y+z=0$, then what is the value of $\frac{x^2}{(y z)}+\frac{y^2}{(x z)}+\frac{z^2}{(x y)}$?
Question : If $\frac{(x+y)}{z}=2$, then what is the value of $[\frac{y}{(y-z)}+\frac{x}{(x-z)}]?$
Question : If $x^{2}+y^{2}+z^{2}=xy+yz+zx$, then the value of $\frac{3x^{4}+7y^{4}+5z^{4}}{5x^{2}y^{2}+7y^{2}z^{2}+3z^{2}x^{2}}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile