Question : If $0°<A<90°$, the value of $\frac{\tan A\ -\ \sec A\ -\ 1}{\tan A\ +\ \sec A\ +\ 1}$ is:
Option 1: $\frac{\sin A-1}{\cos A}$
Option 2: $\frac{1-\sin A}{\cos A}$
Option 3: $\frac{1-\cos A}{\sin A}$
Option 4: $\frac{\sin A+1}{\cos A}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{\sin A-1}{\cos A}$
Solution : Given: $\frac{\tan A-\sec A-1}{\tan A+\sec A+1}$ = $\frac{\tan A-\sec A-(\sec^{2} A-\tan^{2} A)}{\tan A+\sec A+1}$ = $\frac{(\tan A-\sec A)-(\sec A-\tan A)(\sec A+\tan A)}{\tan A+\sec A+1}$ = $\frac{(\tan A-\sec A)+(\tan A-\sec A)(\sec A+\tan A)}{\tan A+\sec A+1}$ = $\frac{(\tan A-\sec A)(1+\sec A+\tan A)}{\tan A+\sec A+1}$ = $\tan A-\sec A$ = $\frac{\sin A}{\cos A}-\frac{1}{\cos A}$ = $\frac{\sin A-1}{\cos A}$ Hence, the correct answer is $\frac{\sin A-1}{\cos A}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : The value of $\frac{\sin A}{1+\cos A}+\frac{\sin A}{1-\cos A}$ is $(0°<A<90°)$:
Question : If $5 \sin^2 A+3 \cos^2 A=4$, $0<A<90°$, then what is the value of $\tan A$?
Question : If $7\sin^2\ \theta+3\cos^2\ \theta=4, (0°<\theta<90°)$, then find the value of $\tan\theta$:
Question : If $1+2 \tan ^2 \theta+2 \sin \theta \sec ^2 \theta=\frac{a}{b}, 0^{\circ}<\theta<90^{\circ}$, then $\frac{a+b}{a-b}=?$
Question : The expression $\frac{(1-\sin \theta+\cos \theta)^2(1-\cos \theta) \sec ^3 \theta\; {\operatorname{cosec}}^2 \theta}{(\sec \theta-\tan \theta)(\tan \theta+\cot \theta)}, 0^{\circ}<\theta<90^{\circ}$, is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile