Question : If $\sin\theta+\operatorname{cosec}\theta=2$, the value of $\sin^{n}\theta+\operatorname{cosec}^{n}\theta$ is:
Option 1: $2^{n}$
Option 2: $2^{\frac{1}{n}}$
Option 3: $2$
Option 4: $0$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $2$
Solution : Given: $\sin\theta+\operatorname{cosec}\theta=2$ Squaring both sides, we get: $(\sin\theta+cosec\theta)^{2}=2^{2}$ ⇒ $\sin^{2}\theta+\operatorname{cosec}^{2}\theta+2\sin\theta×\operatorname{cosec}\theta=4$ ⇒ $\sin^{2}\theta+\operatorname{cosec}^{2}\theta=4–2$ ⇒ $\sin^{2}\theta+\operatorname{cosec}^{2}\theta=2$ Similarly, $(\sin\theta+\operatorname{cosec}\theta)^{3}=2^{3}$ ⇒ $\sin^{3}\theta+\operatorname{cosec}^{3}\theta+\sin\theta×\operatorname{cosec}\theta×(\sin\theta+\operatorname{cosec}\theta)=8$ ⇒ $\sin^{3}\theta+\operatorname{cosec}^{3}\theta+3×2=8$ ⇒ $\sin^{3}\theta+\operatorname{cosec}^{3}\theta=2$ Similarly, we can say the value of $\sin^{n}\theta+\operatorname{cosec}^{n}\theta$ will be 2. Hence, the correct answer is $2$.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : The expression $\frac{\cos ^4 \theta-\sin ^4 \theta+2 \sin ^2 \theta+3}{(\operatorname{cosec} \theta+\cot \theta+1)(\operatorname{cosec} \theta-\cot \theta+1)-2}, 0^{\circ}<\theta<90^{\circ}$, is equal to:
Question : If $\operatorname{cosec}\theta+\sin\theta=\frac{5}{2}$, then the value of $(\operatorname{cosec}\theta-\sin\theta)$ is:
Question : If $\sin \theta + \operatorname{cosec} \theta = \sqrt{5}$, the value of $\sin^3 \theta + \operatorname{cosec}^3 \theta = $?
Question : If $\operatorname{cosec} \theta + \operatorname{cot} \theta = m$, find the value of$\frac{m^2 – 1}{m^2 + 1}$
Question : $\left(\frac{\tan ^3 \theta}{\sec ^2 \theta}+\frac{\cot ^3 \theta}{\operatorname{cosec}^2 \theta}+2 \sin \theta \cos \theta\right) \div\left(1+\operatorname{cosec}^2 \theta+\tan ^2 \theta\right), 0^{\circ}<\theta<90^{\circ}$, is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile