Question : If $x+\frac{1}{x}=\sqrt{3}$, the value of $(x^{18}+x^{12}+x^{6}+1)$ is:
Option 1: 0
Option 2: 1
Option 3: 2
Option 4: 3
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 0
Solution : Given: $x+\frac{1}{x}=\sqrt{3}$ (equation 1) We know that the algebraic identity is $(x+\frac{1}{x})^3=x^3+\frac{1}{x^3}+3(x+\frac{1}{x})$ $x+\frac{1}{x}=\sqrt{3}$ Take the cube on both sides of the above equation, we get, $(x+\frac{1}{x})^3=(\sqrt{3})^3$ $x^3+\frac{1}{x^3}+3(x+\frac{1}{x})=3\sqrt{3}$ Substitute the value from equation 1 in the above equation and we get, $x^3+\frac{1}{x^3}+3\sqrt{3}=3\sqrt{3}$ $x^3+\frac{1}{x^3}+3\sqrt{3}–3\sqrt{3}=0$ $x^6+1=0$ $x^6=–1$ The expression $(x^{18}+x^{12}+x^{6}+1)$ can be written as $(x^6)^3+(x^6)^2+x^{6}+1$ Substitute the value of $x^6=–1$ in above equation, we get, $=(–1)^3+(–1)^2–1+1$ $=–1+1 – 1+1$ $=0$ Hence, the correct answer is 0.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $(x+\frac{1}{x})=6$ and $x>1$, find the value of $(x^2–\frac{1}{x^2})$.
Question : If $\left(x-\frac{1}{x}\right)^2=12$, what is the value of $\left(x^2-\frac{1}{x^2}\right)$, given that $x>0$?
Question : If $\left(x^2+\frac{1}{x^2}\right)=6$ and $0<x<1$, what is the value of $x^4-\frac{1}{x^4}$?
Question : If $x^{2} + \frac{1}{x^{2}} = 18$ and $x > 0$, what is the value of $x^{3} + \frac{1}{x^{3}}?$
Question : If $x+\frac{1}{x}=\sqrt{3}$, the value of $\left (x^{3}+\frac{1}{x^{3}} \right )$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile