Question : If $(a+\frac{1}{a})^2=3$, the value of $(a^3+\frac{1}{a^3})$ is:
Option 1: $0$
Option 2: $3(a+\frac{1}{a})$
Option 3: $3(a^2+\frac{1}{a^2})$
Option 4: $1$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $0$
Solution : Given: $(a+\frac{1}{a})^2=3$ The algebraic identity used is $(a+\frac{1}{a})^3=a^3+\frac{1}{a}^3+3(a+\frac{1}{a})$. $(a+\frac{1}{a})^2=3$ (equation 1) Take the square root of the given equation, we get, $(a+\frac{1}{a})=\sqrt{3}$ (equation 2) Multiplying equation 1 and equation 2, we get, $(a+\frac{1}{a})^2(a+\frac{1}{a})=3\sqrt{3}$ ⇒$(a+\frac{1}{a})^3=3\sqrt{3}$ ⇒ $a^3+\frac{1}{a^3}+3(a+\frac{1}{a})=3\sqrt{3}$ ⇒ $a^3+\frac{1}{a^3}+3\sqrt{3}=3\sqrt{3}$ ⇒ $a^3+\frac{1}{a^3}=3\sqrt{3}–3\sqrt{3}$ ⇒ $a^3+\frac{1}{a^3}=0$ Hence, the correct answer is 0.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $a+\frac{1}{a}=1$, then the value of $\frac{a^2-a+1}{a^2+a+1}$ is $(a\neq 0)$:
Question : If $\frac{2+a}{a}+\frac{2+b}{b}+\frac{2+c}{c}=4$, then the value of $\frac{ab+bc+ca}{abc}$ is:
Question : If $\frac{a}{b}+\frac{b}{a}=-1$ and $a-b=2$, then the value of $a^3-b^3$ is:
Question : If $\frac{a^2}{b+c}=\frac{b^2}{c+a}=\frac{c^2}{a+b}=1$, then find the value of $\frac{2}{1+a}+\frac{2}{1+b}+\frac{2}{1+c}$.
Question : If $x+y+z=0$, then what is the value of $\frac{x^2}{yz}+\frac{y^2}{xz}+\frac{z^2}{xy}$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile