Question : If $\tan x = \frac{7}{5}$, the value of $\frac{9 \sin x – \frac{42}{5} \cos x}{15 \sin x + 21 \cos x}$ is:
Option 1: 0
Option 2: 1
Option 3: 0.1
Option 4: 0.5
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 0.1
Solution : Given: $\tan \ x = \frac{7}{5}$ Now, $\frac{9 \sin\ x – \frac{42}{5} \cos \ x}{15 \sin\ x + 21 \cos\ x}$ $=\frac{9 \tan \ x – \frac{42}{5} }{15 \tan\ x + 21 }$ [Dividing the expression's numerator and denominator by $\cos x$] $=\frac{9 \times\frac{7}{5} – \frac{42}{5} }{15 \times\frac{7}{5} + 21 }$ $=\frac{\frac{63 – 42}{5}}{21 + 21}$ $=\frac{\frac{21}{5}}{42}$ $={\frac{1}{10}}$ $ = 0.1$ Hence, the correct answer is 0.1.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : If $x\sin ^{2}60^{\circ}-\frac{3}{2}\sec 60^{\circ}\tan^{2}30^{\circ}+\frac{4}{5}\sin ^{2}45^{\circ}\tan ^{2}60^{\circ}=0$, then $x$ is:
Question : If $\tan\theta=1$, then the value of $\frac{8\sin\theta\:+\:5\cos\theta}{\sin^{3}\theta\:–\:2\cos^{3}\theta\:+\:7\cos\theta}$ is:
Question : Using trigonometric formulas, find the value of $(\frac{\sin (x-y)}{\sin (x+y)})(\frac{\tan x+\tan y}{\tan x-\tan y})$
Question : If $\sin (x+y) = \cos (x–y)$, then the value of $\cos^2 x$ is:
Question : If $2\cot x=5$, then what is $\frac{2 \cos x-\sin x}{2 \cos x+\sin x}$ equal to?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile