Question : If $\sin\phi=\frac{5}{6}$, the value of $\cot\phi \cdot \sin\phi \cdot \cos\phi$ is:
Option 1: $\frac{6}{5}$
Option 2: $\frac{25}{36}$
Option 3: $\frac{5}{6}$
Option 4: $\frac{11}{36}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{11}{36}$
Solution : Given: $\sin\phi=\frac{5}{6}$. Now, $\cot\phi \cdot \sin\phi \cdot \cos\phi$ = $\frac{\cos\phi}{\sin\phi}×\sin\phi×\cos\phi$ = $\cos^2\phi$ = $1–\sin^2\phi$ = $1–(\frac{5}{6})^2$ = $1–\frac{25}{36}$ = $\frac{11}{36}$ Hence, the correct answer is $\frac{11}{36}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : Find the value of the following expression $\frac{(1+\sec\phi)}{\sec\phi}(1-\cos\phi)$.
Question : The given expression is equal to: $1-\frac{\tan ^2 \phi}{\sec ^2 \phi}$
Question : If $6 \cot \theta=5$, then find the value of $\frac{(6 \cos \theta+\sin \theta)}{(6 \cos\theta-4 \sin\theta)}$
Question : If $\frac{\sin\theta+\cos\theta}{\sin\theta-\cos\theta}=3$, then the value of $\sin^{4}\theta$ is:
Question : If $\sin \theta \cos \theta=\frac{\sqrt{2}}{3}$,then the value of $\left(\sin ^6 \theta+\cos ^6 \theta\right)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile