Question : If $4\left(\operatorname{cosec}^2 57^{\circ}-\tan ^2 33^{\circ}\right)-\cos 90^{\circ}-y \tan ^2 66^{\circ} \tan ^2 24^{\circ}=\frac{y}{2}$, the value of $y$ is:
Option 1: $\frac{8}{3}$
Option 2: $\frac{3}{8}$
Option 3: $8$
Option 4: $\frac{1}{3}$
Correct Answer: $\frac{8}{3}$
Solution : $\operatorname{cosec}(90^{\circ} - \theta) = \sec \theta$ $\tan\theta = \frac{1}{\cot\theta}$ So, $4\left(\operatorname{cosec}^2 57^{\circ}-\tan ^2 33^{\circ}\right)-\cos 90^{\circ}-y \tan ^2 66^{\circ} \tan ^2 24^{\circ}=\frac{y}{2}$ ⇒ $(\operatorname{cosec}^{2}(90-33)^{\circ} - \tan^{2}33^{\circ}) - 0- y×\tan^{2}66^{\circ} × \tan^{2}(90-66)^{\circ}$ = $\frac{y}{2}$ ⇒ $4(\sec^{2}57^{\circ}- \tan^{2}33^{\circ}) - y × \tan^{2}66^{\circ} × \cot^{2}66^{\circ} = \frac{y}{2}$ ⇒ $4 - y = \frac{y}{2}$ ⇒ y = $\frac{8}{3}$ Hence, the correct answer is $\frac{8}{3}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $4\left(\operatorname{cosec}^2 57^\circ-\tan ^2 33^\circ\right)-\cos 90^\circ+y \tan ^2 66^\circ \tan ^2 24^\circ=\frac{y}{2}$, then the value of $y$ is:
Question : Find the value of $\frac{\sin ^2 39^{\circ}+\sin ^2\left(90^{\circ}–39^{\circ}\right)}{\cos ^2 35^{\circ}+\cos ^2\left(90^{\circ}–35^{\circ}\right)}+3 \tan 25^{\circ} \tan 75^{\circ}$:
Question : The value of $\tan ^2 48^{\circ}-\operatorname{cosec}^2 42^{\circ}+\operatorname{cosec}\left(67^{\circ}+\theta\right)-\sec \left(23^{\circ}-\theta\right)$ is:
Question : If $\frac{1}{\operatorname{cosec} \theta+1}+\frac{1}{\operatorname{cosec} \theta-1}=2 \sec \theta, 0^{\circ}<\theta<90^{\circ}$, then the value of $\frac{\tan \theta+2 \sec \theta}{\operatorname{cosec} \theta}$ is:
Question : The value of $\frac{\sin ^2 30^{\circ}+\cos ^2 60^{\circ}-\sec 35^{\circ} \cdot \sin 55^{\circ}}{\sec 60^{\circ}+\operatorname{cosec} 30^{\circ}}$ is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile