Question : If $a^{2}=b+c,b^{2}=c+a,c^{2}=a+b$, the value of $3\left (\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)$ is:
Option 1: $1$
Option 2: $\frac{1}{3}$
Option 3: $3$
Option 4: $4$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $3$
Solution : Given: $a^{2}=b+c,b^{2}=c+a$, and $c^{2}=a+b$ Now, $\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}$ = $\frac{a}{a^2+a}+\frac{b}{b^2+b}+\frac{c}{c^2+c}$ (multiplying the numerator and the denominator of each term by $a,b$, and $c$ respectively) = $\frac{a}{b+c+a}+\frac{b}{c+a+b}+\frac{c}{a+b+c}$ (putting the values of $a^2,b^2$ and $c^2$) = $\frac{a+b+c}{a+b+c}$ = $1$ So, $3\left (\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)=3×1=3$ Hence, the correct answer is $3$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\left (a+\frac{1}{b} \right)=1$ and $\left (b+\frac{1}{c} \right)=1$, the value of $\left (c+\frac{1}{a} \right)$ is:
Question : If $\frac{1}{x^2+a^2}=x^2-a^2$, then the value of $x$ is:
Question : If $M =\left ( \frac{3}{7} \right ) ÷ \left ( \frac{6}{5} \right ) ×\left ( \frac{2}{3} \right ) + \left ( \frac{1}{5} \right ) ×\left ( \frac{3}{2} \right )$ and
Question : If $x_{1}x_{2}x_{3}=4(4+x_{1}+x_{2}+x_{3})$, then what is the value of $\left [ \frac{1}{(2+x_{1})} \right ]+\left [ \frac{1}{(2+x_{2})} \right ]+\left [ \frac{1}{(2+x_{3})} \right ]?$
Question : What is the value of $\left(\frac{1}{a} - \frac{1}{b} - \frac{1}{c}\right)$, if $\frac{2a - 5}{a} - \frac{4b - 5}{b} + \frac{6c + 5}{c} = 0$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile