Question : If $\frac{1}{p}+\frac{1}{q}=\frac{1}{p+q}$, the value of $\left (p^{3}-q^{3}\right )$ is:
Option 1: $p - q$
Option 2: $pq$
Option 3: $1$
Option 4: $0$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $0$
Solution : Given: $\frac{1}{p}+\frac{1}{q}=\frac{1}{p+q}$ ⇒ $\frac{q+p}{pq}=\frac{1}{p+q}$ ⇒ $(p+q)^2=pq$ ⇒ $p^2+q^2+2pq=pq$ ⇒ $p^2+q^2+pq=0$ ----------------------------(i) Now, $\left (p^{3}-q^{3}\right )=(p-q)(p^2+q^2+pq)$ Putting the value of $p^2+q^2+pq=0$ from the equation (i) So, $\left (p^{3}-q^{3}\right)=(p-q)(0)$ ⇒ $\left (p^{3}-q^{3}\right)=0$ Hence, the correct answer is $0$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : Successive discounts of $p$% and $q$% on a catalogue price of an article is equivalent to a single discount of:
Question : If $\tan ^2 \alpha=3+Q^2$, then $\sec \alpha+\tan ^3 \alpha \operatorname{cosec} \alpha=?$
Question : If $M =\left ( \frac{3}{7} \right ) ÷ \left ( \frac{6}{5} \right ) ×\left ( \frac{2}{3} \right ) + \left ( \frac{1}{5} \right ) ×\left ( \frac{3}{2} \right )$ and
Question : If $x_{1}x_{2}x_{3}=4(4+x_{1}+x_{2}+x_{3})$, then what is the value of $\left [ \frac{1}{(2+x_{1})} \right ]+\left [ \frac{1}{(2+x_{2})} \right ]+\left [ \frac{1}{(2+x_{3})} \right ]?$
Question : If $\left (4x+\frac{1}{x} \right)=5,x\neq 0,$ then the value of $\frac{5x}{4x^{2}+10x+1}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile