Question : If $x=5–\sqrt{21}$, the value of $\frac{\sqrt{x}}{\sqrt{32–2x}–\sqrt{21}}$ is:
Option 1: $\frac{1}{\sqrt2}(\sqrt{3}–\sqrt{7})$
Option 2: $\frac{1}{\sqrt2}(\sqrt{7}–\sqrt{3})$
Option 3: $\frac{1}{\sqrt2}(\sqrt{7}+\sqrt{3})$
Option 4: $\frac{1}{\sqrt2}(7–\sqrt{3})$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{1}{\sqrt2}(\sqrt{7}–\sqrt{3})$
Solution : Given: $x=5–\sqrt{21}$ ⇒ $\sqrt{x}=\sqrt{5–\sqrt{21}}$ ⇒ $\sqrt{x}={\sqrt \frac{10–2\sqrt{21}}{2}}$ ⇒ $\sqrt{x}=\sqrt{\frac{7+3–2\sqrt{7}\sqrt{3}}{2}}$ ⇒ $\sqrt{x}=\sqrt{\frac{(\sqrt{7}–\sqrt{3})^{2}}{2}}$ ⇒ $\sqrt{x}=\frac{\sqrt{7}–\sqrt{3}}{\sqrt{2}}$ Putting the value of $\sqrt{x}$ in the expression $\frac{\sqrt{x}}{\sqrt{32–2x}–\sqrt{21}}$, we have: = $\frac{\frac{\sqrt{7}–\sqrt{3}}{\sqrt{2}}}{\sqrt{32–10+2\sqrt{21}}–\sqrt{21}}$ = $\frac{\frac{\sqrt{7}–\sqrt{3}}{\sqrt{2}}}{\sqrt{22+2\sqrt{21}}–\sqrt{21}}$ = $\frac{\frac{\sqrt{7}–\sqrt{3}}{\sqrt{2}}}{\sqrt{21+1+2\sqrt{21}.\sqrt{1}}–\sqrt{21}}$ = $\frac{\frac{\sqrt{7}–\sqrt{3}}{\sqrt{2}}}{\sqrt{(\sqrt{21}+\sqrt{1})^{2}}–\sqrt{21}}$ = $\frac{\frac{\sqrt{7}–\sqrt{3}}{\sqrt{2}}}{\sqrt{21}+1–\sqrt{21}}$ = $\frac{1}{\sqrt{2}}(\sqrt{7}–\sqrt{3})$ Hence, the correct answer is $\frac{1}{\sqrt{2}}(\sqrt{7}–\sqrt{3})$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $x=\frac{4\sqrt{15}}{\sqrt{5}+\sqrt{3}}$, the value of $\frac{x+\sqrt{20}}{x–\sqrt{20}}+\frac{x+\sqrt{12}}{x–\sqrt{12}}$ is:
Question : If $\frac{x}{y}=\frac{4}{5}$, then the value of $(\frac{4}{7}+\frac{2y–x}{2y+x})$ is:
Question : If $x=(7+3 \sqrt{5})$, then find the value of $x^2+\frac{1}{x^2}$.
Question : If $x=(\sqrt{6}-1)^{\frac{1}{3}}$, then the value of $\left(x-\frac{1}{x}\right)^3+3\left(x-\frac{1}{x}\right)$ is:
Question : If $\sqrt{\frac{\mathrm{a}}{\mathrm{b}}}=\frac{8}{3}-\sqrt{\frac{\mathrm{b}}{\mathrm{a}}}$ and $a-b=10$, then the value of $ab$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile